Лабораторная работа № 5.2 ИНТЕРФЕРЕНЦИОННЫЙ ОПЫТ ЮНГА

5.2.1. Цель работы

Целью работы является знакомство с моделированием процесса наложения когерентных электромагнитных волн, изучение закономерностей взаимодействия световых волн от двух источников (щелей) и экспериментальное определение расстояния от щелей до экрана.

5.2.2. Краткая теория

Интерференция света — это перераспределение светового потока в пространстве при наложении двух или нескольких когерентных волн с образованием максимумов и минимумов интенсивности света.

Когерентными называются волны, имеющие одинаковую частоту и постоянную разность фаз, не изменяющуюся с течением времени.

Волны, излучаемые реальными источниками света (исключение – лазеры), не являются когерентными. Для получения когерентных световых волн применяют метод разделения волны, излучаемой одним источником, на две части, которые после прохождения разных оптических путей накладываются друг на друга, и наблюдают интерференционную картину.

Одним из методов наблюдения интерференции является метод Юнга (рис. 5.2.1).

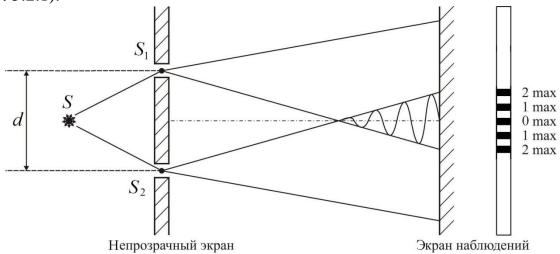


Рис. 5.2.1. Метод Юнга

Свет от некогерентного точечного источника света S попадает на непрозрачный экран с двумя узкими щелями, расположенными на расстоянии d (см. рис. 5.2.1). Эти щели являются когерентными источниками S_1 и S_2 . В пространстве происходит перекрытие световых пучков от этих источников. На экране наблюдений в зависимости от оптической разности хода волн наблюдается чередование максимумов и минимумов освещенности.

Максимум при интерференции волн наблюдается на экране при условии, что оптическая разность хода Δ волн, приходящих в некоторую точку A экрана, равна целому числу длин волн в вакууме или четному числу длин полуволн.

$$\Delta = k\lambda = 2k\frac{\lambda}{2}\,,\tag{5.2.1}$$

где $k = 0, 1, 2, \dots$ (любое целое число);

 λ – длина волны в вакууме.

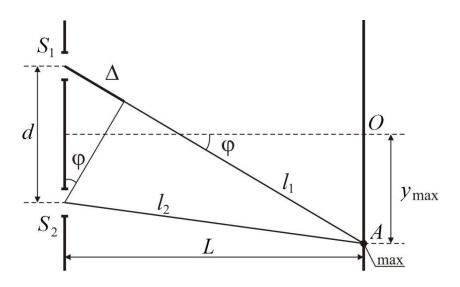


Рис. 5.2.2. К расчету интерференционной картины

Оптическая разность хода лучей от когерентных источников S_1 и S_2 равна разности геометрических путей l_1 и l_2 , умноженной на абсолютный показатель n преломления среды (рис. 5.2.2)

$$\Delta = (l_1 - l_2)n \ . \tag{5.2.2}$$

В опыте Юнга распространение световых волн происходит в воздухе и оптическая разность их хода равна геометрической, так как n=1.

Из рис. 5.2.2 видно, что

$$\Delta = d \cdot \sin(\varphi) . \tag{5.2.3}$$

Так как расстояние от щелей до экрана L>>d , а угол ϕ мал, то

$$\sin(\varphi) \approx \operatorname{tg}(\varphi) \approx \frac{y_{\text{max}}}{L},$$
 (5.2.4)

где y_{max} — координата максимума, отсчитываемая от центра интерференционной картины.

Тогда с учетом выражений (5.2.1) и (5.2.3) при k = 1

$$\frac{d \cdot y_{\text{max}}}{L} = \lambda \,, \tag{5.2.5}$$

откуда

$$y_{\text{max}} = \frac{\lambda \cdot L}{d}.$$
 (5.2.6)

5.2.3. Порядок выполнения работы

Запустите программу «Открытая физика 1.1». Выберите раздел «Оптика» и модель «Интерференционный опыт Юнга». Нажмите вверху внутреннего окна кнопку с изображением страницы. Прочитайте краткие теоретические сведения. Закройте окно теории, нажав кнопку с крестом в правом верхнем углу внутреннего окна.

Внимательно рассмотрите рис. 5.2.3, найдите регуляторы с движками, задающими длину волны λ , расстояние между щелями d, и запишите их в соответствующую таблицу в отчете.

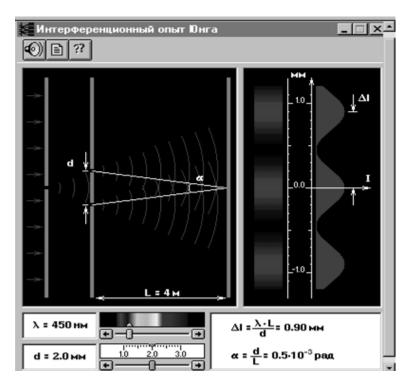


Рис. 5.2.3. Интерференционный опыт Юнга

- 1. Подведите маркер мыши к движку регулятора длины волны, и, удерживая левую кнопку мыши в нажатом состоянии, перемещайте движок и установите числовое значение длины волны λ_1 , взятое из табл. 5.2.1 для вашей бригады. Запишите это значение табл. 5.2.2.
- 2. Аналогичным образом, зацепив мышью движок регулятора расстояния между щелями, установите первое значение d, взятое из табл. 5.2.2. Запишите в эту же таблицу расстояние $y_{\text{max}1}$ между нулевым и первым максимумами (обозначено как ΔI в окошке опыта).
 - 3. Повторите измерения для всех других значений d из табл. 5.2.2.
- 4. Установите числовое значение длины волны λ_2 , взятое из табл. 5.2.1 для вашей бригады и запишите это значение в табл. 5.2.2.
 - 5. Повторите измерения по п. 2, 3 и запишите результаты в табл. 5.2.2.
- 6. Установите числовое значение длины волны λ_3 , взятое из табл. 5.2.1 для вашей бригады и запишите это значение в табл. 5.2.2.
 - 7. Повторите измерения по п. 2, 3 и запишите результаты в табл. 5.2.2.

Исходные данные

Номер бригады	1	2	3	4	5	6	7	8
λ_1	400	410	420	430	440	450	460	470
λ_2	500	510	520	530	540	550	560	570
λ_3	600	610	620	630	640	650	660	670

Таблица 5.2.2 Результаты измерений и расчетов

d, mm	$\lambda_1 = $ HM	λ ₂ = нм	$\lambda_3 =$ HM	1/d, mm ⁻¹
	$y_{\text{max}1}$, MM	$y_{\text{max}1}$, MM	$y_{\text{max}1}$, MM	1/ <i>a</i> , wivi
1,0				
1,3				
1,6				
1,9				
2,1				
2,4				
2,7				
3,0				

5.2.4. Обработка результатов измерений

- 1. Рассчитайте и внесите в табл. 5.2.2 величину, обратную расстоянию между щелями (1/d).
- 2. Постройте на одном рисунке графики экспериментальных зависимостей координаты первого максимума y_{max} от обратного расстояния между щелями для всех длин волн, указав на них соответствующее значение λ .
- 3. Для каждой линии определите по графику экспериментальное значение расстояния L от щелей до экрана (см. рис. 3), используя формулу

$$L = \frac{\Delta(y_{\text{max}})}{\lambda \Delta(1/d)}.$$
 (5.2.8)

- 4. Рассчитайте среднее значение из экспериментально полученных значений L и сравните его с указанным значением в окне опыта.
- 5. Рассчитайте среднюю абсолютную и относительную погрешности измерений (см. формулы (4) и (5)).
 - 6. Запишите ответ с соблюдением правил и вывод.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что называется интерференцией?
- 2. Дайте определение когерентных волн.
- 3. В чем заключается опыт Юнга?
- 4. Что такое геометрическая и оптическая разности хода волн?
- 5. Сформулируйте условие, при выполнении которого наблюдается интерференционный максимум.
- 6. Чему равно расстояние между соседними светлыми интерференционными полосами в опыте Юнга?