Лабораторная работа № 6.1 СПЕКТР ИЗЛУЧЕНИЯ АТОМАРНОГО ВОДОРОДА

6.1.1. Цель работы

Целью работы является знакомство с планетарной и квантовой моделями атома, закономерностями формирования линейчатого спектра излучения атомарного водорода и экспериментальное определение постоянной Ридберга.

6.1.2. Краткая теория

Спектром электромагнитного излучения называется совокупность электромагнитных волн, излучаемых или поглощаемых атомами (молекулами) данного вещества.

Различают линейчатый, полосатый и сплошной спектры.

Пинейчатый спектр излучают атомарные газы. Он состоит из отдельных спектральных линий, расстояние между которыми много больше их ширины.

Полосатый спектр излучают молекулярные газы, а сплошной — нагретые твердые тела.

Отчетливее всего строение спектра испускания обнаруживается в спектре атома водорода, линейчатый спектр которого в видимой и ультрафиолетовой областях представлен на рисунке 6.1.1.

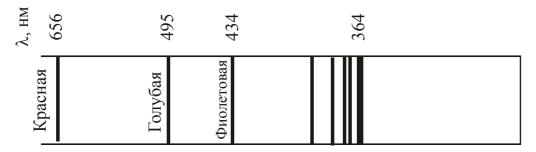


Рис. 6.1.1. Спектр излучения атомарного водорода. Серия Бальмера

Из рис. 6.1.1 видно, что линии располагаются в определенном порядке. Расстояние между линиями закономерно убывает по мере перехода от более длинных волн к более коротким.

Бальмер экспериментально установил формулу, которая очень хорошо описывала положение любой линии в спектре.

$$\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{n^2} \right),\tag{6.1.1}$$

где R – постоянная Ридберга, равная $1,097 \cdot 10^7 \,\mathrm{m}^{-1}$,

n — целые числа, принимающие значение 3, 4, 5 и т. д.

Формула (6.1.1) называется формулой Бальмера-Ридберга, а серия линий, описываемых ей, – серией Бальмера.

Спектральной серией называется совокупность линий излучения, соответствующих переходу электрона в атоме на один и тот же нижний уровень энергии.

Дальнейшие исследования показали, что в спектре водорода имеется еще несколько серий. В ультрафиолетовой области спектра находится серия Лаймана, а в инфракрасной — серии Пашена, Брэкета, Пфунда. Положение линий в любой из серий описывается обобщенной формулой Бальмера:

$$\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right), \tag{6.1.2}$$

где n_1 — номер энергетического уровня, куда переходит электрон;

 n_2 – номер уровня, с которого переходит этот электрон.

Величины n_1 и n_2 называются главными квантовыми числами.

Для серии Лаймана $n_1 = 1$; для серии Бальмера — $n_1 = 2$ и т. д. При заданном n_1 число n_2 принимает все целочисленные значения, начиная с $(n_1 + 1)$. То есть $n_2 = n_1 + 1$, $n_1 + 2$ и т. д. и определяет отдельные линии этой серии.

Для объяснения спектра излучения атома водорода предлагались различные модели атома.

Согласно *планетарной модели* атома вокруг положительного ядра, имеющего заряд +Ze (Z — порядковый номер элемента в системе Менделеева, e — элементарный разряд), по замкнутым орбитам движутся электроны, образуя электронную оболочку атома (рис. 6.1.2). Так как атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т. е. вокруг ядра должно вращаться Z электронов.

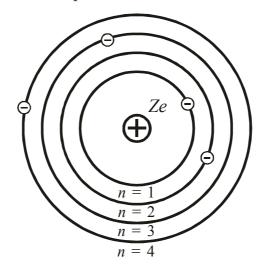


Рис 6.1.2. Планетарная модель атома

Простейшим атомом является атом водорода, состоящий из одного электрона, движущегося в кулоновском электрическом поле ядра.

Согласно квантовой теории атома вместо орбит введено понятие об энергетических уровнях атома. При этом номера уровня совпадают с номерами орбит. Атом и атомная система могут находиться только в определенных стационарных состояниях.

При переходе из одного состояния в другое атомы испускают или поглощают излучения строго определенной частоты (рис. 6.1.3). Энергия стационарных состояний водорода определяется главным квантовым числом n, которое может принимать целочисленные значения $1, 2, \ldots$

$$E_n = -\frac{E_i}{n^2}, (6.1.3)$$

где E_i – энергия ионизации атома водорода, равная 13,6 эВ.

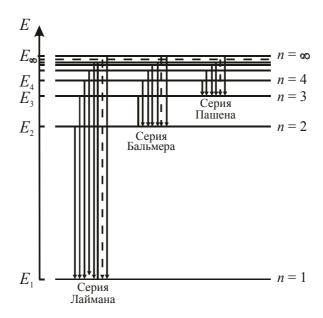


Рис. 6.1.3. Энергетический спектр атома водорода

Нормальному (невозбужденному) состоянию водорода соответствует главное квантовое число n=1. Все остальные состояния называются возбужденными.

С увеличением n линии серии сближаются, значение $n = \infty$ определяет границу серии, к которой со стороны больших частот примыкает сплошной спектр.

Современная модель атома — *квантовая модель*. Она отличается от планетарной, в первую очередь, тем, что в ней электрон не имеет точно определенной координаты и скорости, поэтому бессмысленно говорить о траектории его движения. Можно определить (и нарисовать) только границы области его преимущественного движения (орбитали).

6.1.3. Порядок выполнения работы

Запустите программу «Открытая физика 1.1». Выберите раздел «Квантовая физика», модель «Постулаты Бора». Нажмите вверху внутреннего окна кнопку с изображением страницы. Прочитайте краткие теоретические сведения. Закройте окно теории, нажав кнопку с крестом в правом верхнем углу внутреннего окна.

Внимательно рассмотрите рис. 6.1.4. Регулируемой величиной является номер орбиты, запишите его в соответствующую таблицу в отчете.

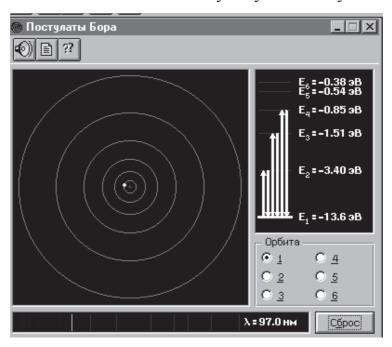


Рис. 6.1.4. Модель атома водорода

- 1. Задайте номер орбиты электрона, равный главному квантовому числу n_1 для серии Лаймана. Для этого подведите маркер мыши к маленькому кругу рядом с необходимым номером и поставьте метку, щелкнув левой кнопкой мыши. Запишите под табл. 6.1.1 величину установленного главного квантового числа n_1 для нижнего уровня энергии данной серии и название серии (см. рис. 6.1.3).
- 2. Щелкая левой кнопкой мыши на орбите с номером $n_2 = (n_1+1)$, наблюдайте за переходом электрона на эту орбиту. Запишите n_2 и соответствующую длину волны в табл. 6.1.1. Зарисуйте в конспект энергетический спектр и стрелкой покажите совершившийся переход.
 - 3. Нажмите кнопу «Сброс».
- 4. Снова установите номер орбиты n_1 и, щелкая левой кнопкой мыши на орбите с номером $n_2 = (n_1 + 2)$, наблюдайте за переходом электрона на эту орбиту. Запишите n_2 и соответствующую длину волны в табл. 6.1.1. Стрелкой на энергетическом спектре покажите этот переход.

- 5. Повторите измерения для всех возможных переходов.
- 6. Задайте номер орбиты электрона, равный главному квантовому числу n_1 для серии Бальмера. Запишите под табл. 6.1.2 величину установленного главного квантового числа n_1 для нижнего уровня энергии данной серии и название серии.
 - 7. Повторите измерения по пп. 2–5, записывая результаты в табл. 6.1.2.

Таблица 6.1.1 **Результаты измерений** Серия Лаймана, $n_1 =$ _____

Номер линии <i>i</i>	n_2	Возможные переходы $(n_1 \rightarrow n_2)$	$\lambda_i,$ MKM	1/λ _i , MKM ⁻¹	$1/{n_2}^2$
1					
2					
3					
4					
5					

Таблица 6.1.2 **Результаты измерений** Серия Бальмера, $n_1 =$ _____

Номер линии <i>i</i>	n_2	Возможные переходы $(n_1 \rightarrow n_2)$	$\lambda_i,$ MKM	1/λ _i , мкм ⁻¹	$1/{n_2}^2$
1					
2					
3					
4					

6.1.4. Обработка результатов измерений

- 1. Вычислите и запишите в табл. 6.1.2 все необходимые значения.
- 2. Постройте график зависимости обратной длины волны $(1/\lambda)$ от обратного квадрата главного квантового числа $(1/{n_2}^2)$ для данной спектральной серии.

3. Определите по наклону графика значение постоянной Ридберга (см. с. 7).

$$R = \frac{\Delta(1/\lambda)}{\Delta(1/n^2)}. (6.1.4)$$

- 4. Рассчитайте относительную и среднюю абсолютную погрешности определения постоянной Ридберга (см. с. 7–8). Табличное значение постоянной $R = 1,097 \cdot 10^7 \,\mathrm{m}^{-1}$.
 - 5. Запишите ответ и проанализируйте ответ и графики.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что называется спектром электромагнитного излучения?
- 2. Какие виды спектров вы знаете? Что является их источниками?
- 3. Опишите планетарную модель атома.
- 4. В чем отличие квантовой модели от планетарной?
- 5. При каких условиях электроны в атоме излучают или поглощают электромагнитное излучение?
 - 6. Дайте характеристику стационарным состояниям атома.
- 7. Что определяет главное квантовое число? Какие значения оно принимает?
 - 8. Что включает в себя понятие об энергетических уровнях?
 - 9. Что называется спектральной серией?
- 10. Назовите спектральные серии излучения атомарного водорода. Объясните, как они возникают?