# Лабораторная работа № 4.3 СВОБОДНЫЕ КОЛЕБАНИЯ В *RLC*-КОНТУРЕ

## 4.3.1. Цель работы

Целью лабораторной работы является экспериментальное исследование закономерностей свободных затухающих колебаний и определение величины индуктивности контура.

# 4.3.2. Краткая теория

*Колебания* — любой физический процесс, характеризующийся той или иной повторяемостью в пространстве и времени.

При гармонических колебаниях колеблющаяся физическая величина изменяется с течением времени по закону синуса или косинуса.

Свободные колебания — это колебания, происходящие за счет энергии, запасенной первоначально в системе. В процессе свободных колебаний восполнения потерь энергии не происходит. Свободные электромагнитные колебания возникают в колебательном контуре.

Колебательным контуром называется замкнутая электрическая цепь, состоящая из последовательно соединенных конденсатора с емкостью C, катушки с индуктивностью L и электрического сопротивления R (рис. 4.3.1).

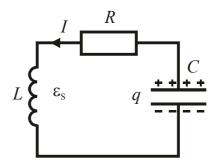



Рис. 4.3.1. Реальный колебательный контур

Если сопротивление R = 0, то электромагнитные колебания в контуре являются незатухающими из-за отсутствия потерь энергии, а колебательный контур –  $udeanbhbhhhhh}$ .

В идеальном колебательном контуре возможны гармонические незатухающие колебания тока I, заряда конденсатора q и напряжения на конденсаторе  $U_C$ .

По второму правилу Кирхгофа для идеального колебательного контура можно записать

$$U_C = \varepsilon_S, \tag{4.3.1}$$

где  $U_C = \frac{q}{C}$  – напряжение на конденсаторе;

$$\varepsilon_S = -L \frac{dI}{dt} - ЭДС самоиндукции в катушке.$$

Сила тока в цепи (по определению)

$$I = \frac{dq}{dt} \,. \tag{4.3.2}$$

Подставив записанное выше выражение в формулу (4.3.1), получим дифференциальное уравнение незатухающих колебаний для заряда конденсатора.

$$\frac{d^2q}{dt^2} + \omega_0^2 q = 0, (4.3.3)$$

где  $\omega_0 = \frac{1}{\sqrt{LC}}$  — собственная частота свободных колебаний в контуре.

Решая это дифференциальное уравнение, можно получить, что заряд конденсатора с течением времени изменяется по гармоническому закону:

$$q(t) = q_0 \cos(\omega_0 t + \alpha_0),$$
 (4.3.4)

где  $q_0$  – амплитуда колебаний заряда;

 $\alpha_0$  — начальная фаза колебаний.

Период электромагнитных колебаний определяется по *формуле Томсона*:

$$T = \frac{2\pi}{\omega_0} = 2\pi\sqrt{LC} \ . \tag{4.3.5}$$

Если в колебательном контуре присутствует активное сопротивление R, то свободные колебания в контуре будут затухать из-за потерь энергии: нагрев проводников, гистерезис в сердечнике катушки индуктивности, поляризация диэлектрика внутри конденсатора.

Согласно II правилу Кирхгофа (см. рис. 4.3.1)

$$U_C + U_R = \varepsilon_S, \tag{4.3.6}$$

где  $U_R = IR$  — напряжение на резисторе.

Дифференциальное уравнение свободных затухающих колебаний имеет вид

$$\frac{d^2q}{dt^2} + 2\beta \frac{dq}{dt} + \omega_0^2 q = 0, \qquad (4.3.7)$$

где  $\beta = \frac{R}{2L}$  — коэффициент затухания свободных колебаний в контуре.

Колебания возникают в контуре, если его сопротивление R меньше критического

$$R_{\rm K} = 2\sqrt{\frac{L}{C}} \,. \tag{4.3.8}$$

Решая дифференциальное уравнение (4.3.7) при  $R < R_{\kappa}$ , можно получить, что заряд конденсатора в случае свободных затухающих колебаний изменяется по закону

$$q(t) = q_{m0} e^{-\beta t} \cos(\omega t + \alpha),$$
 (4.3.9)

где  $q_{m_0}$  – заряд конденсатора в начальный момент времени;

 $q_{m0}e^{-\beta t}$  – амплитуда колебаний заряда конденсатора;

$$\omega = \sqrt{{\omega_0}^2 - \beta^2} \,$$
 – частота затухающих колебаний.

Время затухания колебаний в контуре  $\tau$  – это время, за которое амплитуда колебаний уменьшается в e=2,72 раз. На графике зависимости амплитуды затухающих колебаний от времени (рис. 4.3.2) касательная,

проведенная к этому графику в начальный момент времени, пересекает ось времени в точке t= au.

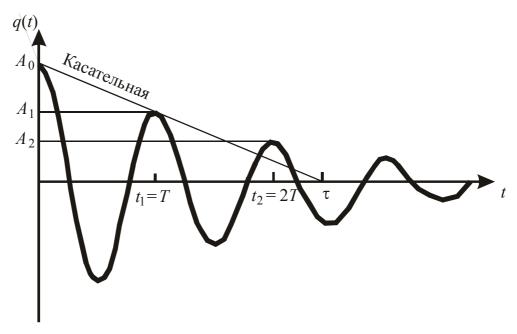



Рис. 4.3.2. Зависимость амплитуды затухающих колебаний от времени

Погарифмическим декрементом затухания  $\lambda$  называется величина, определяемая натуральным логарифмом отношения амплитуды колебаний в данный момент времени t к амплитуде колебаний через время, равное периоду колебаний

$$\lambda = \ln \frac{A(t)}{A(t+T)} \,. \tag{4.3.10}$$

Для затухающих электромагнитных колебаний, с учетом (4.3.9)

$$\lambda = \beta T. \tag{4.3.11}$$

$$Q = \frac{\pi}{\lambda} \,. \tag{4.3.10}$$

Чем больше добротность контура, тем медленнее затухают колебания.

#### 4.3.3. Порядок выполнения работы

Запустите программу «Открытая физика 1.1». Выберите «Электричество и магнетизм» и «Свободные колебания в *RLC*-контуре». Нажмите вверху внутреннего окна кнопку с изображением страницы. Прочитайте краткие теоретические сведения. Закройте окно теории, нажав кнопку с крестом в правом верхнем углу внутреннего окна.

Внимательно рассмотрите рис. 4.3.3, найдите регуляторы с движками, задающими индуктивность контура L, электроемкость конденсатора C и сопротивление R, и запишите их в соответствующую таблицу в отчете (см. с. 6).

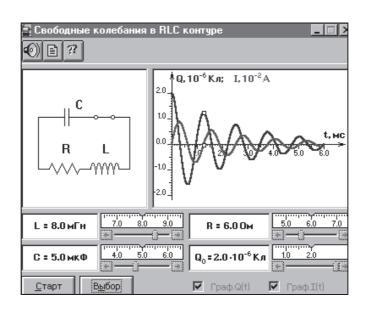



Рис. 4.3.3. Свободные колебания в *RLC*- контуре

Нажмите мышью кнопку «Выбор». Подведите маркер мыши к движку регулятора, нажмите на левую кнопку мыши и, удерживая ее в нажатом состоянии, меняйте величину емкости конденсатора и установите числовое значение, указанное в табл. 4.3.1 для вашей бригады. Аналогичным способом установите величину индуктивности в соответствии с табл. 4.3.1. Запишите установленные значения под заголовком табл. 4.3.2.

Установите сопротивление резистора R=1 Ом. Нажав кнопку «Старт», наблюдайте за движением маленького квадратика по графику зависимости заряда конденсатора от времени.

Измерьте в пошаговом режиме семь значений амплитуд колебаний заряда конденсатора  $(Q_0, Q_1 - Q_6)$ .

В начальный момент времени t=0 первое значение амплитуды  $Q_0=2\cdot 10^{-6}$  Кл. Это нулевой максимум.

Щелкните мышью кнопку « || » в верхнем ряду кнопок и «Старт». Затем нажимайте мышью несколько раз кнопку « $\blacktriangleright$ |» вверху окна, пока метка (маленький квадратик) на графике q(t) не окажется на вершине первого максимума. Запишите с экрана значение амплитуды  $Q_1$  в табл. 4.3.2.

Опять нажимайте мышью несколько раз кнопку « $\blacktriangleright$ |», пока метка не окажется на вершине второго максимума, и запишите  $Q_2$ . Далее аналогично измерьте значения остальных амплитуд колебаний заряда.

Меняя сопротивление R, повторите измерения амплитуд и заполните таблицу 4.3.2.

Таблица 4.3.1 Значения емкости конденсатора и индуктивности катушки

| Номер<br>бригады   | 1 | 2 | 3   | 4   | 5   | 6   | 7 | 8 |
|--------------------|---|---|-----|-----|-----|-----|---|---|
| $C$ , мк $\Phi$    | 3 | 3 | 2,7 | 2,7 | 2,4 | 2,4 | 2 | 2 |
| $L$ , м $\Gamma$ н | 6 | 7 | 8   | 9   | 10  | 9   | 8 | 7 |

#### Результаты измерений

C =\_\_\_\_\_MK $\Phi$ , L =\_\_\_\_M $\Gamma$ H, T =\_\_\_\_Mc

| <i>R</i> ,<br>Ом | $Q_1$ ,<br>мкКл | $Q_{2}$ ,<br>мкКл | <i>Q</i> 3,<br>мкКл | <i>Q</i> 4,<br>мкКл | <i>Q</i> 5,<br>мкКл | $Q_{6}, \  m_{MKKл}$ | τ,<br>MC | β,<br>c <sup>-1</sup> |
|------------------|-----------------|-------------------|---------------------|---------------------|---------------------|----------------------|----------|-----------------------|
| 1                |                 |                   |                     |                     |                     |                      |          |                       |
| 2                |                 |                   |                     |                     |                     |                      |          |                       |
| 3                |                 |                   |                     |                     |                     |                      |          |                       |
| 4                |                 |                   |                     |                     |                     |                      |          |                       |
| 5                |                 |                   |                     |                     |                     |                      |          |                       |
| 6                |                 |                   |                     |                     |                     |                      |          |                       |
| t, MC            |                 |                   |                     |                     |                     |                      |          |                       |

## 4.3.4. Обработка результатов измерений

- 1. Рассчитайте по формуле (4.3.5) значение периода колебаний и запишите его под заголовком табл. 4.3.2.
- 2. Рассчитайте время t, при котором измерена соответствующая амплитуда, и запишите в табл. 4.3.2 ( $t_1 = T$ ,  $t_2 = 2T$ ,  $t_3 = 3T$  и т. д.).
- 3. По данным табл. 4.3.2 постройте на одном чертеже графики экспериментальных зависимостей амплитуды колебания заряда Q от времени t (шесть линий, соответствующих разным значениям R).
- 4. Для каждого графика постройте касательную к нему в начальный момент времени (см. рис. 4.3.2). Продолжив касательную до пересечения с осью времени, определите экспериментальное значение постоянной времени затухания т и запишите в табл. 4.3.2.
- 5. Рассчитайте величины коэффициента затухания  $\beta = 1/\tau$  и также внесите в табл. 4.3.2.
- 6. Постройте график зависимости коэффициента затухания  $\beta$  от сопротивления R резистора.
- 7. По наклону графика  $\beta(R)$  (см. с. 7)определите индуктивность контура, используя формулу

$$L = \frac{1}{2} \frac{\Delta R}{\Delta \beta} \,.$$

$$(4.3.11)$$

8. Сравните рассчитанное значение индуктивности с заданным первоначально. Рассчитайте относительную и абсолютную погрешности (см. с. 8).

#### КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что называется колебанием?
- 2. Какие колебания называются свободными?
- 3. Что называется колебательным контуром?
- 4. Что такое идеальный колебательный контур?
- 5. Какие колебания называются гармоническими?
- 6. Какие физические величины испытывают колебания в идеальном колебательном контуре?
- 7. Запишите дифференциальное уравнение для заряда конденсатора в контуре в случае свободных незатухающих гармонических колебаний.
- 8. Запишите формулу зависимости заряда на конденсаторе от времени при свободных незатухающих колебаниях в контуре.
- 9. Запишите дифференциальное уравнение для заряда конденсатора в контуре в случае свободных затухающих колебаний.
- 10. Запишите формулу зависимости заряда на конденсаторе от времени при свободных затухающих колебаниях в контуре.
  - 11. Запишите формулу Томсона для периода колебаний.
- 12. Напишите формулу для коэффициента затухания и частоты затухающих колебаний
  - 13. Что называется временем затухания?
  - 14. Чему равен логарифмический декремент затухания?
  - 15. Как определяется добротность колебательного контура?
  - 16. Как определяется графически время затухания?